## THIOLENE 1,1-DIOXIDES. SYNTHESIS OF AZIDO- AND AMINONITROSULFODIENES

## I. E. Efremova, S. V. Bortnikov, and B. M. Berestovitskaya

Keywords: azide group, heterocycles, nitro group, nitrothiolene dioxides, amination.

Dinitrothiolene 1,1-dioxides [1] containing the *s*-trans-fixed 1,4-dinitro-1,3-diene system hold interest as key synthones for the preparation of functionally substituted heterocyclic nitrosulfodienes. Dinitrodienes are capable of reacting with nucleophiles through an electron transfer pathway as well as  $Ad_N$  and  $S_N$ Vin reactions [2, 3].



We have shown that the reaction of dinitrosulfodiene **1** with sodium azide in acetic acid at room temperature proceeds chemo-, regio-, and stereoselectively to give the product of nucleophilic vinyl substitution of the exocyclic nitro group, namely,  $Z_{,E-2-(1-azido-1-phenyl)}$ methylene-3-methyl-4-nitro-3-thiolene 1,1-dioxide (**2**) in yields above 50%. The reaction of **2** with aniline and phenylhydrazine proceed through an analogous  $S_N$ Vin pathway to give nitroenamines **3** and **4**.

We note that **3** and **4** could not be obtained directly from dinitrothiolene 1,1-dioxide **1**. This failure is probably related to the high oxidizing capacity of this dioxide and its high tendency to oxidize amines.

Azido- and aminonitrosulfodienes 2-4 are stable crystalline compounds, which are colorless in the crystalline state but appear yellow in polar solvents. The structure of 2-4 was assigned by analyzing their spectral data in comparison with the indices of 1 [1] and a model analog, namely, 4-anilino-1-nitro-2,3-diphenyl-1,3-butadiene [4]

Heterocyclic nitroenamines 3 and 4 hold interest as compounds with potential biological activity [5, 6].

The IR spectra were taken on a Specord IR-75 spectrometer. The <sup>1</sup>H NMR spectra were taken for solutions in  $CDCl_3$  on a Bruker AC-200 spectrometer at 200 MHz with HMDS as the internal standard.

A. Hertzen Russian State Pedagogical University, St. Petersburg 191186, Russia, e-mail: chemis@herzen.spb.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1464-1465, October, 2002. Original article submitted August 14, 2002.

**2-(1-Azido-1-phenyl)methylene-3-methyl-4-nitro-3-thiolene 1,1-Dioxide (2)** was obtained in 51% yield; mp 162-165°C (dec., from acetic acid). IR spectrum, v, cm<sup>-1</sup>: 1635 (C=C), 1520, 1330 (NO<sub>2</sub>), 1330, 1130 (SO<sub>2</sub>), 2130 (N<sub>3</sub>). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 2.02 (3H, s, CH<sub>3</sub>); 4.52 (2H, s, CH<sub>2</sub>); 7.40-8.05 (5H, m, Ph). Found, %: C 47.14, 47.14; H 3.51, 3.54; N 18.35, 18.30. C<sub>12</sub>H<sub>10</sub>N<sub>4</sub>O<sub>4</sub>S. Calculated, %: C 47.06; H 3.27; N 18.30.

**2-(1-Anilino-1-phenyl)methylene-3-methyl-4-nitro-3-thiolene 1,1-Dioxide (3)** was obtained in 25% yield; mp 157-158°C (ethanol). IR spectrum, v, cm<sup>-1</sup>: 1610 (C=C), 1550, 1320 (NO<sub>2</sub>), 1320, 1140 (SO<sub>2</sub>), 3330 (NH). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 1.90 (3H, s, CH<sub>3</sub>); 4.75 (2H, s, CH<sub>2</sub>); 6.90, 7.20, 7.93, 7.80, 8.15 (11H, m, Ph, NH). Found, %: C 60.80, 60.78; H 4.67, 4.65; N 7.99, 8.02. C<sub>18</sub>H<sub>16</sub>N<sub>2</sub>O<sub>4</sub>S. Calculated, %: C 60.67; H 4.49; N 7.87.

**3-Methyl-4-nitro-2-(1-phenyl-1-phenylhydrazino)methylene-3-thiolene 1,1-Dioxide** (40 was obtained in 24% yield; mp 110-111°C (ethanol). IR spectrum, v, cm<sup>-1</sup>: 1600 (C=C), 1555, 1320 (NO<sub>2</sub>), 1320, 1140 (SO<sub>2</sub>), 3330 (NH). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 2.00 (3H, s, CH<sub>3</sub>); 4.48 (2H, s, CH<sub>2</sub>); 6.80, 7.00, 7.25, 7.48, 7.70, 8.00 (12H, m, Ph, NH). Found, %: C 58.20, 58.24; H 4.51, 4.54; N 11.35, 11.30. C<sub>18</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>S. Calculated, %: C 58.22; H 4.58; N 11.32.

## REFERENCES

- 1. I. E. Efremova, S. V. Bortnikov, and V. M. Berestovitskaya, Zh. Obshch. Khim., 71, 1047 (2001).
- 2. E. S. Lipina and V. V. Perekalin, Acta Phys. Chem., 19, 125 (1973).
- 3. E. S. Lipina and V. V. Perekalin, Zh. Obshch. Khim., 34, 3644 (1964).
- 4. E. S. Lipina, Z. F. Pavlova, and T. Ya. Paperno, *Zh. Org. Khim.*, 6, 1123 (1970).
- 5. M. M. Maslova, N. B. Marchenko, and R. G. Glushkov, *Khim.-farm. Zh.*, No. 4, 41 (1993).
- 6. E. N. Gate, M. A. Meek, C. H. Schwalbe, M. F. G. Stevens, and M. D. Threadgill, J. Chem. Soc., Perkin Trans. 2, 251 (1985).